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Bias in the direct numerical simulation of isotropic turbulence using the lattice Boltzmann
method
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Direct numerical simulation of homogeneous, isotropic turbulence using the lattice Boltzmann method is
revised. Two-point pressure and velocity correlations are studied and analytical results are derived taking into
account the dynamics of the lattice Boltzmann equation. Using the parameters of a two-dime(2apeil
and a three-dimension@D3Q19 model, it is demonstrated that correlation functions obtained from lattice
Boltzmann simulations may have systematic errors at large separation distances due to the second-order error
terms.
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I. INTRODUCTION tion distance, and these terms may cause systematic devia-

. . . L . ions in th rrelation functions.
Direct numerical simulation is a standard tool in turbu-to s In the correlation functions

lence researchl]. It is generally admitted that, using direct Il. THE LATTICE BOLTZMANN METHOD

numerical simulation, one has to resolve all the energy-

containing scales of the flow, i.e., the smallest one has to be For completeness, let us briefly recall some basic facts on
on the order ofy, which is the Kolmogorov scalg]. Since  the lattice Boltzmann methodor details see Ref.7]).

in such simulations the numerical methods are required to Using the lattice Boltzmann meth@ddBM), one solves a
reproduce all the scales accurately, spectral methods werliscrete kinetic equation for the one-particle velocity distri-
used almost exclusively in the beginning of the numericalbution functionsf;-s [8,9]

turbulence research. However, due to the development of

fast, low-storage new numerical algorithms, the pri\t)ilege of filx+ cidx,t+At) - fi(x, 1) = &, @)
spectral methods seems to be over, and nowadays it is n@terec; is the lattice vectorAx is the lattice spacingAt is
difficult to find direct numerical simulations, where finite the time step, and); is the collision operator.

difference or discrete kinetic schemes are in action. For in- |n this paper we use the simplest form of the latter, i.e.,
stance, Benzét al.[3] used the lattice Boltzmann method to the BGK operatof10,11]

study the scaling properties of the structure functions in an-

isotropic homogeneous turbulence. Fogaceiaal. [4] ex- QO =—}[f-(x £) - 159, 1)]

tended the lattice Boltzmann method to study plasma turbu- ! !

lence. Amatiet al. [5] simulated fully developed turbulence
and recently Cosgrovet al.[6] studied flow instabilities in a
channel using the lattice Boltzmann approach.

In this paper we study the fundamental equation of th
method used by Benzt al. [3], viz., the lattice Boltzmann Ciu
equation with the BGK(Bhatnagar-Gross-Krookcollision feq‘W{p+ po{ +—§(C.a0|ﬁ s ,3)”, 2
operator. This collision operator describes a single relaxation CS CS
process to an interpolated Maxwell-Boltzmann equilibrium.where w; is the lattice weight,p= pc is the pressurep,
The correlations between the equilibrium distributions play 3=p0c is the reference pressure,is the hydrodynamic ve-
major role in the analysis. So, first the two-point correlatlon|oc|ty, andc, is the speed of soung@epeated Greek indices
functions between the equilibrium distributions will be de- jmply summation.
rived considering homogeneous and isotropic turbulence. Solving Eq.(1), one can obtain the macroscopic quantities
Then, it will be shown how these correlations give rise topy taking the suitable moments of the distribution functions
two-point correlations between the macroscopic quantities
such as the pressure and the velocity. It will be pointed out p=>fi,  PoUy=> Ciafi-
that the well-known form of the two-point pressure and ve- i i
locity correlations can be obtained in the low Mach number
limit, and these correlations do not contain systematic devuawe
tions up to the accuracy of the method considered. Howeve
in the second-order error some terms scale with the separ

where 7 is the relaxation time anéfis an equilibrium dis-
tribution function. The equilibrium distribution function can
etake the following form12]:

For a specific model, the lattice vector and the lattice
ights need to be selected. In our analysis we will use the
arameters of a two-dimensional, nine-velocity model
2Q9 and a three-dimensional, 19-velocity model

(D3Q19 [13].
For these models, the lattice links and the corresponding
*Electronic address: gah@sunserv.kfki.hu weights are defined as follows:
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Without the loss of generality, we can assume that the
reference pressum=1. Substitution of the equilibrium dis-
tribution functions into Eq(4) yields

1
C????ez (x1,0,(0,£1 W?f??sz 5

1
Cridne™ (1, £ 1) whig= oo

and

c5°%9=(0,0,0
cp?¥9=(+1,0,0,(0,£1,0,(0,0, £ 1)

P2 =(+1,+1,0,(x1,0,£1,(0,£1, %)

BiAr) = Iijd[p(x) + WiaUa(X) + Pigpuia(X)U(X)]
X[p(x+r) +Wju,(x+r)

+ D U (X+ 1)U (X +1)]), (5)

where we introduced the following quantities:

(@]

2
< Ci,Cig—C:O
_ _ v _ Viavip sYap
Tij =ww;, ‘I’m——g, Dipp=—""—7"".
CS CS

A. Homogeneous turbulence

Assuming homogeneity, the right-hand side of E5).can
be rewritten as follows:

BiA(r) =Tj[Tijo(r) + Tija(r) + Tija(r) + Tija(r) + Tija(r)
+Tys(r)], (6)

where

Wo219 - é
1

W6 = 1g
1

wis= L
7,...,18 36

Using Chapman-Enskog expansion, one can show that the
solution of Eq.(1) results in solutions of the incompressible
Navier-Stokes equations with some errors. The errors are in
relation to the finite lattice spacing, time step, and Mach
number. Basically, the lattice Boltzmann method is a second-
order numerical method for the Navier-Stokes equation in
the low Mach number limit. The method can be simplified
significantly if the relaxation time=1. Then, the LBE takes
the form

fi(x,t) = f{4x — cAx,t — At). ©)

Note that this form establishes relations between macro-
scopic quantities implicitly. First, for simplicity, we will use
this form of the lattice Boltzmann equation, but later our
analysis will be extended considering the influence of the
nonequilibrium distributions.

It is worth mentioning that in lattice Boltzmann models
the relaxation time is in direct relation with the viscosity and,
in practice, the simplification above would prescribe strict
lower and upper limits for the available viscosity and Rey-
nolds number, respectively. However, in our analysis the do-
main size is not limited and consequently we can consider
arbitrarily high Reynolds numbers.

Ill. CORRELATIONS BETWEEN EQUILIBRIUM
DISTRIBUTIONS

The correlations between the equilibrium distributions
separated by a vectorcan be written as follows:

BEA(r) =(fF00fx + 1)), (4)

where the operataf...) means ensemble averaging.
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Tijo(r) =Bpp(r),

Tija(r) = Wi B o(r) + Wi,Bp (1),
Tij2(r) = @iggBupp(r) + @jagBp ap(r),
Tija(r) =W, W 5B, 4(r),

Tija(r) = @i 0g¥V;,Bug (1) + @i g Vi, By op6(r),

Tij5(r) = q)iaﬁ(bjynBaB,yn(r) .

Here, Bs are two-point correlations between the corre-
sponding macroscopic quantities, i.e.,

Bp,p(r) = (p(X)p(x + 1)),
Bp.o = (PX)U(X + 1)),
Bap = (Ua(X)P(X +1)),

Bag,p(r) = (U () Ug(X)P(X + 1)),
Bp,ap(r) = (P(X)U,(X + T)ug(X +1)),
Ba,p(r) = (Ua(X)ug(X +1)),

Bug /(1) = (U (X)Ug(X)u, (X +T)),
B,,ap(r) = (U, (X)Uu(X +1)Ug(X +T)),
Bag,yy(1) = (Uas(X)U5(X)U(X + 1)U, (X +T)).

B. Isotropic turbulence
In the case of homogeneous, isotropic turbulence, the

two-point correlations can depend only on the distance be-
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tween the points considered, and the terms in the correlatioequation, i.e., Eq(3), the macroscopic quantities are given
functions of the equilibrium distributions can be rewritten by the moments of the distribution functions at time
using the well-known forms of two-point correlation tensors
for homogeneous, isotropic field$4] POt =2 ff9x - ciAxt - Ab),
I

Tijo(r) =Q(r),
u,(x,t) = 2 CiafS9x — GiAX,t — Al).

Tijl(r) =11 ij, a_D(r) ) . . ) ]
It is worth noting that in the previous sections we worked
with continuousx andr, but here we consider bothandr

Tio(r) =115 A E1(N)1 o1 g+ Ex(1) 8,6), on a lattice space.
IJS(r) H” aﬁ[Al(r)r rlg+A2(r) ﬁ] A. Two-point pressure correlation
Thus, the two-point pressure correlation can be written as
Tij4(r) = H;},aﬁy[Bl(r)rarBr7+ BZ(r)(aﬁyra + 5a7rB) follows:
* Ba(1) dagl ], Bp,o(1,1) = (p(x,p(x +1,1))
—_ eq, . —
Tis(1) =TI7 5 [T T g o1+ Co1)(F T 58+ 11 1 5) —<[EI fiAx — gAxt At)]
+ Ca(r)(ror,0g, 1ol 05+ gl ,0nnt 1l 04
ANTal 398 70y * T Oun ™ Tl e X[Effq(x+r—chx,t—At]>.
+Cy(r)(8,,05, + 8anday) + Cs(r) 84p0,,1, (7) j
where Q(r), Ay Ar), By  4r), C,  4r), D(r), and Assuming statistical stationarity, we can drop the time ar-
E;,.. 4r) are some unknown scalar functions and guments, obtaining
I = Wie = Wie 0= @i+ Do, Bpp(N) =2 2 (175 o - )
- <
e =, MY, =d,.V, -0,V
i,aB ip Hijapy= Piap¥jy ™ Pjastiy —E BiAR;).
(5)
i apyn= PiapPiyy: ® As one can see, the pressure correlation can be expressed

To obtain(7) and (8) homogeneity of the fields was used, by the combination of equilibrium distribution correlations,
implying, for instance, thatB, ,(r)=B,,(-r) and, since whereR;=r+Ax(c;—¢;) (see Fig. L
B,p(r)=(r,/r)D(r), thereforeB, ,(r)=—(r,/r)D(r) [14]. Using Eq.(6), one obtains

Bpp(r) = E [ Ti(Ryj) 9
IV. MACROSCOPIC CORRELATIONS IN Lik
HOMOGENEOUS, ISOTROPIC TURBULENCE where, e.g.,

Let us consider a lattice Boltzmann simulation of a homo- Ri .
geneous, isotropic turbulent flow where the lattice spacing is Ti(Ryy) = H.(,l)a—J—D(R”)
fine enough to resolve all the relevant scales of the turbulent
field. Considering the simplest form of the lattice BoltzmannandR; =|R;;| is the length of the separation vector.
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Expressing the lattice Boltzmann pressure correlatiorierms, the correlation can be written as follows:
Bp,p(r) by the terms of Eq(9), one has to get back the base

correlationB, ,(r)=Q(r), which depends only on. Due to ~Ba,5 = (Al of g+ Agb,p) +{46,5(kBy + 1B, + By) + 41,1 g
the finite lattice spacing the result is somewhat more compli- R Py 2
cated, since terms involvingx in the function arguments X[+ 1)By + 1By +17(B; + By JrAx+ O(AXY),
also appear in the correlation. (12

Taking the Taylor expansion of the correlation function
~ . . . where k=3 and k=4 for the D2Q9 and the D3Q19 model,
By,p(r) and keeping only the leading and first-order terms'respectively

one can obtain

It is worth noting that to obtain Eq12) we assumed that
~ AD+rD’ the scalar function of the mixed correlati@(r) vanishes.
Bpp=Q+2— —Ax+ O(AX), (100 This assumption is justified for incompressible flows, as we
demonstrated in the previous section.
where the prime is for derivatives with respect rtoi.e., The longitudinal correlation function can be obtained by

D’=dD/dr, A=1, and\=2 for the D2Q9 and the D3Q19 rewriting Eq.(12)

models, respectively.

~ So, we have found that th.e two-point pressure correle.morﬁLL = (Ar2+ Ay) + {4(kB, + 1B} + Bs) + 4r2[(k + 1)By + 1B}

is given by Eq.(10) in the lattice Boltzmann models consid-

ered here. During the derivation we presumed that the corre-  + 1 (B;+ By)[JAX + O(AX). (13

lations have their perfect isotropic forms in the neighborhood

of the two points in question. This is an ideal situation.
Using this assumption, we obtained a first-order erro

term in the two-point pressure correlation, and the error term

is in relation to the scalar function of the two-point mixed B,=-Bj, By=-

pressure-velocity correlation, i.eD(r). A brief analysis can r

show that the term disappears in the low Mach number limit

Indeed, the term is zero if the functidd(r) satisfies the

following differential equation:

AD/r +D’ =0. (11)

For a solenoidal velocity field, the scalar functions of the
rthird moments satisfy the following relatioh&4]:

3g,-Ip: (14)
2% 27%

Substitution of the relation€l4) into Eq. (13) yields

3 1
BLL=BLL+ 4{Bs<l —§K> + B§r<§:<— 3>]Ax+ O(AX?).

Since the solution of this equation is given Byr)=cr™, (15

which become; infinite qtzo andc#0, thgre_foreD(r)=0 IS In order to express the deviation of the two-point velocity
the only possible solution. Actually, this IS a well-known .o relation of the lattice Boltzmann simulation in terms of
result of classical analysis of isotropic fields; the mixed cor—BL’L' we can use the von Karman—Howarth equation, which

relation vanishes in incompressible flojigl]. Since the lat- /s a relation between the second and third morfibdit
tice Boltzmann models studied here work in the low Mach

number limit, this result is in line with the standard theory. aBL (D) ( P

4
—+—-]|B rt)+2
ot ar r)[ ()

B. Two-point velocity correlation (16)

dBy L (r,1) }
Nas BRSELY
ar

In the same way, we can derive the two-point velocity o . ) ]
correlation function. where the longitudinal third-order correlation can be written

The two-point velocity correlation can be given as fol- & follows[14]:
lows:

BiiL= Blr3 + (2B, + By)r. a7
(Ua(X)ug(x +1)) = [E Ciof (X — CiAX)] _ , ,
i Using the relationg14), one can obtain
e
X[Ej CJij q(X+I’ —CjAX)}> Bl =-2rBs. (18)
-3 BEYR Considering statistical steady state and substituting the
- ¥ CiaCiBi (R} third-order correlation into Eq.16), the following ordinary

differential equation can be derived:
Using Eq.(6), one obtains

i d 4 _(d 4\dB,
B (r) = zkciacjﬁrijTij,k(Rij)- a * F (rBg) = a * F dr. (19
i,

Now, one can take the Taylor expansion of the aboveThe solution of the above ordinary differential equation is
correlation and, keeping only the leading and first-ordemiven by
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r5 not relevant, it is worth making a grid refinement to check
Bs(r) = g{f Axr¥(rBy +4B[ )dr+c|, (200  the results when correlatiorfer spectra obtained by lattice
Boltzmann simulations are studied.
where we used that the kinematic viscosity is given by

=Ax/6 in the case of=1 for the models in question, ards V. THE INFLUENCE OF THE NONEQUILIBRIUM
a constant. DISTRIBUTIONS

Substitution of Eq(20) into Eq. (15) yields In order to study the influence of the nonequilibrium dis-
tribution functions on the correlations, we rewrite the evolu-

3 1 1 , .
B3<1 - EK) + Bér(EK - 3) = 1—2[(K - 6)Ax(B} | + 4Bﬁ,Lr_1) tion equation as follows:
1 1
+8r73(4 — k)(6¢c + AxI)], fi(x,t) = (1 - —)fi(x - GAX,t = At) + = ff4x — cAX,t — At).
T T

where Now, the pressure can be obtained by

— 3 ” ’ 1
'—ff (rBL +4B( )dr. p(x,t):<1——)2 fi(x = GAX,t = At)
T/

Using integration by parts, one can see that

1
+ = f%9x - cAx,t - At).
fr4B[’Ldr:r4Bﬁ'L—4f rég dr, T

In statistical steady state, the two-point pressure correla-

therefore tion can be written as follows:
1=rB[ . - 1~ _
LL Bpp(r) = ?Bg’qp(r) + Bzfpo(r), (25)

The LBM correlation can be rewritten as follows:
where

EL,L = BL,L + ¢1r_5AX + ¢2r_lAX2 + O(sz), (21) ~
BEh(r) = 2 (X — GAX) FFYx + 1 - ¢AX) = > BSARy)),
ij ij

where

¢y = 1604 - K)C, (22) and the nonequilibrium contribution is given by
4 ~ e 1 1 1\2
$2= (2B . (23) Bpp(r) = 177 JIGU(Ry) + Go(Rip)] +{ 1 -~ | Gs(Ry),

Note that the first-order term decays rapidly with the separawhere
tion distance and becomes zero in the case=dd, whereas _ e
the other part of the error turns out to be second ordénin Ga(Ry) = 2 (filx ~ G fx+1 - iAx),
Accordingly, the results are in line with the classical
analysis again.
Let us study now the second-order error term. This term is
a function of the separation distancethe basic functions
A; or),Cy... dr),Eyo(r), and their derivatives up to second
order. The function is quite complicated; therefore, we
specify here only the most relevant part, which includes the

i

G(Ryj) = 2 (fFYx — AN fj(x + 1 - ¢jAx)),
i

Ga(Rjj) = X (fi(x — GAXfj(x +1 —cjAX)).  (26)
i

function C,(r). The error associated witB;(r) can be writ- By performing a Chapman-Enskog expansion one can go
ten as a step further. So, we introduce the following expansions:
— ! 21 o n
Y =w(k+2rrf(k+1)Cy+2rCL+1°CY],  (24) (oAt + AD =S SO0 (D),

wherew=4/9 andw=4 for D2Q9 and D3Q19 models, re- iont m
spectively.

One can see that this part of the error is strongly depen- -
dent on the separation distance, and one may presume that at fi=2 e, (27)

n=0

large separation distance the error can become relevant as far
as the derivatives of4(r) are not negligible. .

This result suggests that correlations obtained by lattice _ N
Boltzmann simulations should be considered with some cau- 9= E_ & 0 (28)
tion, because the correlations can be distorted systematically o
at large separation distances by the numerical errors. Awheree=Ax=At is a small parametdthe Knudsen numbgr
though one may expect that the above-mentioned errors asnd Dtnz(atn+ciaaa).
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After some algebra, one can derive the following relations -

in the consecutive order of the small paraméfid]:

0(%: fO=f9xt),

1
O(eh):- =f? =D, f{?, (29)
T

PHYSICAL REVIEW E 71, 036705(2005
_ Req 2 1 nege
Bp,p(r) =By p(Rjj) + e 1- - [lﬁj [Bi***4Ry)
1 2
+ BﬁQnecx(Rij)]] + 82<1 _ _) E Bir}eqne%Rij)-
T i

Obviously, in the case of=1 we get back the results
obtained in the previous sections, but in any other case the

and correspondingly we also can decompose the distributioponequilibrium distributions influence the correlation func-

functions as follows:

f = o4 gffed (30)

where
fineq: fi(l) + Sfi(z) .

Substituting Eq(30) into (26) yields

Gi(Rj)) = ~B;‘“;qp(Rij) + 82 Bi**UR;)),
ij

Gy(Rjj) = Eg,qp(Rij) + 82 Bi*"*4R;),
ij

Gs(Rjj) = Egﬁp(Rij) + 82 [Bi*%*4R;) + Bi*"(Ry)]
i
+22> B9 Ry,
ij

where

BIE9YR;)) = (fI°Yx — GAX) fPYx + 1 = ¢jAX)),
BiY ARy = (7Y — AN f*Yx + 1 - ¢jAX)),

BI*9"*YR;j) = (f*4x — A f{*Ux + 1 - ¢AX)).

Collecting terms with the same order, the nonequilibrium

contribution can be written as follows:

~ 2| 2
Bpol(r) = [%(1—%) +<1—%) }Bgﬁp(Rij)+s;<l—%>

X [E [Bi***4Ry) + Bﬁqneo(Rij)]] (31
i

1 2
R 82(1 _ -) S BenedR, ). (32
T i

tions through their correlation with the equilibriuffirst-
order effect and the nonequilibrium distributionsecond-
order effec}.

Using the second relation dR9), one can express the
nonequilibrium in terms of equilibrium distributions, that is
by macroscopic quantities, and the nonequilibrium contribu-
tion can be given explicitly. However, the expression ob-
tained in such way is far more complicated than the expres-
sion obtained for the equilibrium correlation, and it does not
suggest a simple interpretation. Therefore, numerical experi-
ments are planned to be performed in order to obtain further
information about the nonequilibrium contribution.

It is worth mentioning that one can apply diffusive scaling
instead of the classical one used in this section. It has been
demonstrated in Refl5] that the diffusive scaling and the
application of a LBM equivalent moment system can yield
directly the incompressible Navier-Stokes equations instead
of the compressible one. Such treatment may have the ad-
vantage of a simpler derivation, and further simplifications in
the results might be obtained.

VI. CONCLUSION

Analytical results habe been derived for the two-point
pressure and velocity correlations in the case of steady, ho-
mogeneous, isotropic turbulence based on the lattice Boltz-
mann equation. It has been shown that both the pressure and
the velocity correlations have first-order deviation terms due
to the finite lattice spacing. In the low Mach number limit,
the first-order terms disappear.

However, the second-order error is a weighted combina-
tion of two-point correlation functions and their derivatives.
Accordingly, the error can behave systematically. Because
the weights are powers of the separation distance, they may
become relevant at large separation distances. Therefore, it is
worth checking the lattice Boltzmann simulation results by
grid refinement when details of the correlatidios spectra
are studied.

The two-point correlations between pressure and velocity
are in direct relation to the two-point correlations between
the equilibrium distributions in lattice Boltzmann models.
The nonequilibrium distributions give further first- and
second-order contributions to those correlations.

The situation considered in this paper starts from “macro-
scopically ideal” fields, i.e., the pressure and velocity fields

Substituting the nonequilibrium  contributiof81) into  are homogeneous and isotropic. Numerical experiments need
(25), one obtains the lattice Boltzmann pressure correlationo be performed in order to study nonideal problems and to
for arbitrary relaxation time clarify the effect of the nonequilibrium distributions.
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