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Direct numerical simulation of homogeneous, isotropic turbulence using the lattice Boltzmann method is
revised. Two-point pressure and velocity correlations are studied and analytical results are derived taking into
account the dynamics of the lattice Boltzmann equation. Using the parameters of a two-dimensionalsD2Q9d
and a three-dimensionalsD3Q19d model, it is demonstrated that correlation functions obtained from lattice
Boltzmann simulations may have systematic errors at large separation distances due to the second-order error
terms.
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I. INTRODUCTION

Direct numerical simulation is a standard tool in turbu-
lence researchf1g. It is generally admitted that, using direct
numerical simulation, one has to resolve all the energy-
containing scales of the flow, i.e., the smallest one has to be
on the order ofh, which is the Kolmogorov scalef2g. Since
in such simulations the numerical methods are required to
reproduce all the scales accurately, spectral methods were
used almost exclusively in the beginning of the numerical
turbulence research. However, due to the development of
fast, low-storage new numerical algorithms, the privilege of
spectral methods seems to be over, and nowadays it is not
difficult to find direct numerical simulations, where finite
difference or discrete kinetic schemes are in action. For in-
stance, Benziet al. f3g used the lattice Boltzmann method to
study the scaling properties of the structure functions in an-
isotropic homogeneous turbulence. Fogacciaet al. f4g ex-
tended the lattice Boltzmann method to study plasma turbu-
lence. Amatiet al. f5g simulated fully developed turbulence
and recently Cosgroveet al. f6g studied flow instabilities in a
channel using the lattice Boltzmann approach.

In this paper we study the fundamental equation of the
method used by Benziet al. f3g, viz., the lattice Boltzmann
equation with the BGKsBhatnagar-Gross-Krookd collision
operator. This collision operator describes a single relaxation
process to an interpolated Maxwell-Boltzmann equilibrium.
The correlations between the equilibrium distributions play a
major role in the analysis. So, first the two-point correlation
functions between the equilibrium distributions will be de-
rived considering homogeneous and isotropic turbulence.
Then, it will be shown how these correlations give rise to
two-point correlations between the macroscopic quantities
such as the pressure and the velocity. It will be pointed out
that the well-known form of the two-point pressure and ve-
locity correlations can be obtained in the low Mach number
limit, and these correlations do not contain systematic devia-
tions up to the accuracy of the method considered. However,
in the second-order error some terms scale with the separa-

tion distance, and these terms may cause systematic devia-
tions in the correlation functions.

II. THE LATTICE BOLTZMANN METHOD

For completeness, let us briefly recall some basic facts on
the lattice Boltzmann methodsfor details see Ref.f7gd.

Using the lattice Boltzmann methodsLBM d, one solves a
discrete kinetic equation for the one-particle velocity distri-
bution functionsf i-s f8,9g

f isx + ciDx,t + Dtd − f isx,td = Vi , s1d

whereci is the lattice vector,Dx is the lattice spacing,Dt is
the time step, andVi is the collision operator.

In this paper we use the simplest form of the latter, i.e.,
the BGK operatorf10,11g

Vi = −
1

t
ff isx,td − f i

eqsx,tdg,

wheret is the relaxation time andf i
eq is an equilibrium dis-

tribution function. The equilibrium distribution function can
take the following formf12g:

f i
eq= wiFp + p0Fciaua

cs
2 +

uaub

cs
4 sciacib − cs

2dabdGG , s2d

where wi is the lattice weight,p=rcs
2 is the pressure,p0

=r0cs
2 is the reference pressure,u is the hydrodynamic ve-

locity, andcs is the speed of soundsrepeated Greek indices
imply summationd.

Solving Eq.s1d, one can obtain the macroscopic quantities
by taking the suitable moments of the distribution functions

p = o
i

f i, p0ua = o
i

ciaf i .

For a specific model, the lattice vector and the lattice
weights need to be selected. In our analysis we will use the
parameters of a two-dimensional, nine-velocity model
sD2Q9d and a three-dimensional, 19-velocity model
sD3Q19d f13g.

For these models, the lattice links and the corresponding
weights are defined as follows:*Electronic address: gah@sunserv.kfki.hu
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c0
D2Q9 = s0,0d w0

D2Q9 =
4

9

c1,. . .,6
D2Q9 = s±1,0d,s0, ± 1d w1,. . .,6

D2Q9 =
1

9

c7,. . .,18
D2Q9 = s±1, ± 1d w7,. . .,18

D2Q9 =
1

36

and

c0
D2Q19 = s0,0,0d

c1,. . .,6
D2Q19 = s±1,0,0d,s0, ± 1,0d,s0,0, ± 1d

c7,. . .,18
D2Q19 = s±1, ± 1,0d,s±1,0, ± 1d,s0, ± 1, ± 1d

w0
D2Q19 =

1

3

w1,. . .,6
D2Q19 =

1

18

w7,. . .,18
D2Q19 =

1

36
.

Using Chapman-Enskog expansion, one can show that the
solution of Eq.s1d results in solutions of the incompressible
Navier-Stokes equations with some errors. The errors are in
relation to the finite lattice spacing, time step, and Mach
number. Basically, the lattice Boltzmann method is a second-
order numerical method for the Navier-Stokes equation in
the low Mach number limit. The method can be simplified
significantly if the relaxation timet=1. Then, the LBE takes
the form

f isx,td = f i
eqsx − ciDx,t − Dtd. s3d

Note that this form establishes relations between macro-
scopic quantities implicitly. First, for simplicity, we will use
this form of the lattice Boltzmann equation, but later our
analysis will be extended considering the influence of the
nonequilibrium distributions.

It is worth mentioning that in lattice Boltzmann models
the relaxation time is in direct relation with the viscosity and,
in practice, the simplification above would prescribe strict
lower and upper limits for the available viscosity and Rey-
nolds number, respectively. However, in our analysis the do-
main size is not limited and consequently we can consider
arbitrarily high Reynolds numbers.

III. CORRELATIONS BETWEEN EQUILIBRIUM
DISTRIBUTIONS

The correlations between the equilibrium distributions
separated by a vectorr can be written as follows:

Bij
eqsr d = kf i

eqsxdf j
eqsx + r dl, s4d

where the operatork. . .l means ensemble averaging.

Without the loss of generality, we can assume that the
reference pressurep0=1. Substitution of the equilibrium dis-
tribution functions into Eq.s4d yields

Bij
eqsrd = Gi jkfpsxd + Ciauasxd + Fiabuasxdubsxdg

3fpsx + r d + C jgugsx + r d

+ F jghugsx + r duhsx + r dgl, s5d

where we introduced the following quantities:

Gi j = wiwj, Cia =
cia

cs
2 , Fiab =

ciacib − cs
2dab

cs
4 .

A. Homogeneous turbulence

Assuming homogeneity, the right-hand side of Eq.s5d can
be rewritten as follows:

Bij
eqsr d = Gi jfTij 0sr d + Tij 1sr d + Tij 2sr d + Tij 3sr d + Tij 4sr d

+ Tij 5sr dg, s6d

where

Tij 0sr d = Bp,psr d,

Tij 1sr d = CiaBa,psr d + C jaBp,asr d,

Tij 2sr d = FiabBab,psr d + F jabBp,absr d,

Tij 3sr d = CiaC jbBa,bsr d,

Tij 4sr d = FiabC jgBab,gsr d + F jabCigBg,absr d,

Tij 5sr d = FiabF jghBab,ghsr d.

Here, Bs are two-point correlations between the corre-
sponding macroscopic quantities, i.e.,

Bp,psr d = kpsxdpsx + r dl,

Bp,a = kpsxduasx + r dl,

Ba,p = kuasxdpsx + r dl,

Bab,psr d = kuasxdubsxdpsx + r dl,

Bp,absr d = kpsxduasx + r dubsx + r dl,

Ba,bsr d = kuasxdubsx + r dl,

Bab,gsr d = kuasxdubsxdugsx + r dl,

Bg,absr d = kugsxduasx + r dubsx + r dl,

Bab,ghsr d = kuasxdubsxdugsx + r duhsx + r dl.

B. Isotropic turbulence

In the case of homogeneous, isotropic turbulence, the
two-point correlations can depend only on the distance be-

GÁBOR HÁZI PHYSICAL REVIEW E 71, 036705s2005d

036705-2



tween the points considered, and the terms in the correlation
functions of the equilibrium distributions can be rewritten
using the well-known forms of two-point correlation tensors
for homogeneous, isotropic fieldsf14g

Tij 0sr d = Qsrd,

Tij 1sr d = Pi j ,a
1 ra

r
Dsrd,

Tij 2sr d = Pi j ,ab
2 fE1srdrarb + E2srddabg,

Tij 3sr d = Pi j ,ab
3 fA1srdrarb + A2srddabg,

Tij 4sr d = Pi j ,abg
4 fB1srdrarbrg + B2srdsdbgra + dagrbd

+ B3srddabrgg,

Tij 5sr d = Pi j ,abgh
5 fC1srdrarbrgrh + C2srdsrarbdgh + rgrhdabd

+ C3srdsrargdbh + rarhdbg + rbrgdah + rbrhdagd

+ C4srdsdagdbh + dahdbgd + C5srddabdghg, s7d

where Qsrd, A1,. . .,2srd, B1,. . .,3srd, C1,. . .,5srd, Dsrd, and
E1,. . .,2srd are some unknown scalar functions and

Pi j ,a
s1d = Cia − C ja, Pi j ,ab

s2d = F jab + Fiab,

Pi j ,ab
s3d = CiaC jb, Pi j ,abg

s4d = FiabC jg − F jabCig,

Pi j ,abgh
s5d = FiabF jgh. s8d

To obtain s7d and s8d homogeneity of the fields was used,
implying, for instance, thatBp,asr d=Ba,ps−r d and, since
Ba,psr d=sra/rdDsrd, thereforeBp,asr d=−sra/rdDsrd f14g.

IV. MACROSCOPIC CORRELATIONS IN
HOMOGENEOUS, ISOTROPIC TURBULENCE

Let us consider a lattice Boltzmann simulation of a homo-
geneous, isotropic turbulent flow where the lattice spacing is
fine enough to resolve all the relevant scales of the turbulent
field. Considering the simplest form of the lattice Boltzmann

equation, i.e., Eq.s3d, the macroscopic quantities are given
by the moments of the distribution functions at timet

psx,td = o
i

f i
eqsx − ciDx,t − Dtd,

uasx,td = o
i

ciaf i
eqsx − ciDx,t − Dtd.

It is worth noting that in the previous sections we worked
with continuousx and r , but here we consider bothx and r
on a lattice space.

A. Two-point pressure correlation

Thus, the two-point pressure correlation can be written as
follows:

B̃p,psr ,td = kpsx,tdpsx + r ,tdl

= KFo
i

f i
eqsx − ciDx,t − DtdG

3Fo
j

f j
eqsx + r − cjDx,t − DtgL .

Assuming statistical stationarity, we can drop the time ar-
guments, obtaining

B̃p,psr d = o
i
o

j

kf i
eqsx − ciDxdf j

eqsx + r − cjDxdl

= o
i,j

Bij
eqsRi jd.

As one can see, the pressure correlation can be expressed
by the combination of equilibrium distribution correlations,
whereRi j =r +Dxsci −cjd ssee Fig. 1d.

Using Eq.s6d, one obtains

B̃p,psr d = o
i,j ,k

Gi jTijksRi jd, s9d

where, e.g.,

Tij 1sRi jd = Pi j ,a
s1d Rij ,a

Rij
DsRijd,

andRij = uRi j u is the length of the separation vector.

FIG. 1. Indices of the lattice
links are shown for a D2Q9 model
sleft topd. The base separation
vector and the nearest neighbors
are shown with the separation
vector of the sixth and first link
correlations.
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Expressing the lattice Boltzmann pressure correlation

B̃p,psr d by the terms of Eq.s9d, one has to get back the base
correlationBp,psr d=Qsrd, which depends only onr. Due to
the finite lattice spacing the result is somewhat more compli-
cated, since terms involvingDx in the function arguments
also appear in the correlation.

Taking the Taylor expansion of the correlation function

B̃p,psrd and keeping only the leading and first-order terms,
one can obtain

B̃p,p = Q + 2
lD + rD8

r
Dx + OsDx2d, s10d

where the prime is for derivatives with respect tor, i.e.,
D8=dD/dr, l=1, andl=2 for the D2Q9 and the D3Q19
models, respectively.

So, we have found that the two-point pressure correlation
is given by Eq.s10d in the lattice Boltzmann models consid-
ered here. During the derivation we presumed that the corre-
lations have their perfect isotropic forms in the neighborhood
of the two points in question. This is an ideal situation.

Using this assumption, we obtained a first-order error
term in the two-point pressure correlation, and the error term
is in relation to the scalar function of the two-point mixed
pressure-velocity correlation, i.e.,Dsrd. A brief analysis can
show that the term disappears in the low Mach number limit.
Indeed, the term is zero if the functionDsrd satisfies the
following differential equation:

lD/r + D8 = 0. s11d

Since the solution of this equation is given byDsrd=cr−l,
which becomes infinite atr =0 andcÞ0, thereforeDsrd=0 is
the only possible solution. Actually, this is a well-known
result of classical analysis of isotropic fields; the mixed cor-
relation vanishes in incompressible flowsf14g. Since the lat-
tice Boltzmann models studied here work in the low Mach
number limit, this result is in line with the standard theory.

B. Two-point velocity correlation

In the same way, we can derive the two-point velocity
correlation function.

The two-point velocity correlation can be given as fol-
lows:

kuasxdubsx + r dl = KFo
i

ciaf i
eqsx − ciDxdG

3Fo
j

cjbf j
eqsx + r − cjDxdGL

= o
i,j

ciacjbBij
eqsRi jd.

Using Eq.s6d, one obtains

B̃a,bsr d = o
i,j ,k

ciacjbGi jTij ,ksRi jd.

Now, one can take the Taylor expansion of the above
correlation and, keeping only the leading and first-order

terms, the correlation can be written as follows:

B̃a,b = sA1rarb + A2dabd + h4dabskB2 + rB28 + B3d + 4rarb

3fsk + 1dB1 + rB18 + r−1sB28 + B38dgjDx + OsDx2d,

s12d

wherek=3 andk=4 for the D2Q9 and the D3Q19 model,
respectively.

It is worth noting that to obtain Eq.s12d we assumed that
the scalar function of the mixed correlationDsrd vanishes.
This assumption is justified for incompressible flows, as we
demonstrated in the previous section.

The longitudinal correlation function can be obtained by
rewriting Eq.s12d

B̃L,L = sA1r
2 + A2d + h4skB2 + rB28 + B3d + 4r2fsk + 1dB1 + rB18

+ r−1sB28 + B38dgjDx + OsDx2d. s13d

For a solenoidal velocity field, the scalar functions of the
third moments satisfy the following relationsf14g:

B1 =
1

r
B38, B2 = −

3

2
B3 −

r

2
B38. s14d

Substitution of the relationss14d into Eq. s13d yields

B̃L,L = BL,L + 4FB3S1 −
3

2
kD + B38rS1

2
k − 3DGDx + OsDx2d.

s15d

In order to express the deviation of the two-point velocity
correlation of the lattice Boltzmann simulation in terms of
BL,L, we can use the von Kármán–Howarth equation, which
forms a relation between the second and third momentf14g

]BL,Lsr,td
]t

= S ]

]r
+

4

r
DFBLL,Lsr,td + 2y

]BL,Lsr,td
]r

G ,

s16d

where the longitudinal third-order correlation can be written
as followsf14g:

BLL,L = B1r
3 + s2B2 + B3dr . s17d

Using the relationss14d, one can obtain

BLL,L = − 2rB3. s18d

Considering statistical steady state and substituting the
third-order correlation into Eq.s16d, the following ordinary
differential equation can be derived:

S d

dr
+

4

r
DsrB3d = nS d

dr
+

4

r
DdBL,L

dr.
s19d

The solution of the above ordinary differential equation is
given by
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B3srd =
r−5

6
FE Dxr3srBL,L9 + 4BL,L8 ddr + cG , s20d

where we used that the kinematic viscosity is given byn
=Dx/6 in the case oft=1 for the models in question, andc is
a constant.

Substitution of Eq.s20d into Eq. s15d yields

B3S1 −
3

2
kD + B38rS1

2
k − 3D =

1

12
fsk − 6dDxsBL,L9 + 4BL,L8 r−1d

+ 8r−5s4 − kds6c + DxIdg,

where

I =E r3srBL,L9 + 4BL,L8 ddr.

Using integration by parts, one can see that

E r4BL,L9 dr = r4BL,L8 − 4E r3BL,L8 dr,

therefore

I = r4BL,L8 .

The LBM correlation can be rewritten as follows:

B̃L,L = BL,L + f1r
−5Dx + f2r

−1Dx2 + OsDx2d, s21d

where

f1 = 16s4 − kdc, s22d

f2 =
4

3
s2 − kdBL,L8 . s23d

Note that the first-order term decays rapidly with the separa-
tion distance and becomes zero in the case ofc=0, whereas
the other part of the error turns out to be second order inDx.

Accordingly, the results are in line with the classical
analysis again.

Let us study now the second-order error term. This term is
a function of the separation distancer, the basic functions
A1,2srd ,C1,. . .,5srd ,E1,2srd, and their derivatives up to second
order. The function is quite complicated; therefore, we
specify here only the most relevant part, which includes the
function C1srd. The error associated withC1srd can be writ-
ten as

Y = Ãsk + 2drarbfsk + 1dC1 + 2rC18 + r2C19g, s24d

whereÃ=4/9 andÃ=4 for D2Q9 and D3Q19 models, re-
spectively.

One can see that this part of the error is strongly depen-
dent on the separation distance, and one may presume that at
large separation distance the error can become relevant as far
as the derivatives ofC1srd are not negligible.

This result suggests that correlations obtained by lattice
Boltzmann simulations should be considered with some cau-
tion, because the correlations can be distorted systematically
at large separation distances by the numerical errors. Al-
though one may expect that the above-mentioned errors are

not relevant, it is worth making a grid refinement to check
the results when correlationssor spectrad obtained by lattice
Boltzmann simulations are studied.

V. THE INFLUENCE OF THE NONEQUILIBRIUM
DISTRIBUTIONS

In order to study the influence of the nonequilibrium dis-
tribution functions on the correlations, we rewrite the evolu-
tion equation as follows:

f isx,td = S1 −
1

t
D f isx − ciDx,t − Dtd +

1

t
f i
eqsx − ciDx,t − Dtd.

Now, the pressure can be obtained by

psx,td = S1 −
1

t
Do

i

f isx − ciDx,t − Dtd

+
1

t
o

i

f i
eqsx − ciDx,t − Dtd.

In statistical steady state, the two-point pressure correla-
tion can be written as follows:

B̃p,psr d =
1

t2B̃p,p
eq sr d + B̃p,p

neqsr d, s25d

where

B̃p,p
eq sr d = o

i,j
kf i

eqsx − ciDxdf j
eqsx + r − cjDxdl = o

i,j
Bij

eqsRi jd,

and the nonequilibrium contribution is given by

B̃p,p
neqsr d =

1

t
S1 −

1

t
DfG1sRi jd + G2sRi jdg + S1 −

1

t
D2

G3sRi jd,

where

G1sRi jd = o
i,j

kf isx − ciDxdf j
eqsx + r − cjDxdl,

G2sRi jd = o
i,j

kf i
eqsx − ciDxdf jsx + r − cjDxdl,

G3sRi jd = o
i,j

kf isx − ciDxdf jsx + r − cjDxdl. s26d

By performing a Chapman-Enskog expansion one can go
a step further. So, we introduce the following expansions:

f isx + ciDx,t + Dtd = o
i=0

`
«n

n!
Dtn

n f isx,td,

f i = o
n=0

`

«nf i
snd, s27d

]t = o
n=0

`

«n]tn
, s28d

where«=Dx=Dt is a small parametersthe Knudsen numberd
andDtn

;s]tn
+cia]ad.
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After some algebra, one can derive the following relations
in the consecutive order of the small parameterf12g:

Os«0d: f i
s0d = f i

eqsx,td,

Os«1d:−
1

t
f i

s1d = Dt0
f i

s0d, s29d

and correspondingly we also can decompose the distribution
functions as follows:

f i = f i
eq+ «f i

neq, s30d

where

f i
neq= f i

s1d + «f i
s2d + ¯ .

Substituting Eq.s30d into s26d yields

G1sRi jd = B̃p,p
eq sRi jd + «o

i,j
Bij

neq,eqsRi jd,

G2sRi jd = B̃p,p
eq sRi jd + «o

i,j
Bij

eq,neqsRi jd,

G3sRi jd = B̃p,p
eq sRi jd + «o

i,j
fBij

neq,eqsRi jd + Bij
eq,neqsRi jdg

+ «2o
i,j

Bij
neq,neqsRi jd,

where

Bij
neq,eqsRi jd = kf i

neqsx − ciDxdf j
eqsx + r − cjDxdl,

Bij
eq,neqsRi jd = kf i

eqsx − ciDxdf j
neqsx + r − cjDxdl,

Bij
neq,neqsRi jd = kf i

neqsx − ciDxdf j
neqsx + r − cjDxdl.

Collecting terms with the same order, the nonequilibrium
contribution can be written as follows:

B̃p,p
neqsr d = F2

t
S1 −

1

t
D + S1 −

1

t
D2GB̃p,p

eq sRi jd + «
2

t
S1 −

1

t
D

3Fo
i,j

fBij
neq,eqsRi jd + Bij

eq,neqsRi jdgG s31d

+ «2S1 −
1

t
D2

o
i,j

Bij
neq,neqsRi jd. s32d

Substituting the nonequilibrium contributions31d into
s25d, one obtains the lattice Boltzmann pressure correlation
for arbitrary relaxation time

B̃p,psr d = B̃p,p
eq sRi jd + «

2

t
S1 −

1

t
DFo

i,j
fBij

neq,eqsRi jd

+ Bij
eq,neqsRi jdgG + «2S1 −

1

t
D2

o
i,j

Bij
neq,neqsRi jd.

Obviously, in the case oft=1 we get back the results
obtained in the previous sections, but in any other case the
nonequilibrium distributions influence the correlation func-
tions through their correlation with the equilibriumsfirst-
order effectd and the nonequilibrium distributionsssecond-
order effectd.

Using the second relation ofs29d, one can express the
nonequilibrium in terms of equilibrium distributions, that is
by macroscopic quantities, and the nonequilibrium contribu-
tion can be given explicitly. However, the expression ob-
tained in such way is far more complicated than the expres-
sion obtained for the equilibrium correlation, and it does not
suggest a simple interpretation. Therefore, numerical experi-
ments are planned to be performed in order to obtain further
information about the nonequilibrium contribution.

It is worth mentioning that one can apply diffusive scaling
instead of the classical one used in this section. It has been
demonstrated in Ref.f15g that the diffusive scaling and the
application of a LBM equivalent moment system can yield
directly the incompressible Navier-Stokes equations instead
of the compressible one. Such treatment may have the ad-
vantage of a simpler derivation, and further simplifications in
the results might be obtained.

VI. CONCLUSION

Analytical results habe been derived for the two-point
pressure and velocity correlations in the case of steady, ho-
mogeneous, isotropic turbulence based on the lattice Boltz-
mann equation. It has been shown that both the pressure and
the velocity correlations have first-order deviation terms due
to the finite lattice spacing. In the low Mach number limit,
the first-order terms disappear.

However, the second-order error is a weighted combina-
tion of two-point correlation functions and their derivatives.
Accordingly, the error can behave systematically. Because
the weights are powers of the separation distance, they may
become relevant at large separation distances. Therefore, it is
worth checking the lattice Boltzmann simulation results by
grid refinement when details of the correlationssor spectrad
are studied.

The two-point correlations between pressure and velocity
are in direct relation to the two-point correlations between
the equilibrium distributions in lattice Boltzmann models.
The nonequilibrium distributions give further first- and
second-order contributions to those correlations.

The situation considered in this paper starts from “macro-
scopically ideal” fields, i.e., the pressure and velocity fields
are homogeneous and isotropic. Numerical experiments need
to be performed in order to study nonideal problems and to
clarify the effect of the nonequilibrium distributions.
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